## **CHAPTER 8. ALKENES: REACTIONS AND SYNTHESIS**

## <u>Hydration of Alkenes by Oxymercuration-Reduction</u>

- concerted formation of three-membered ring intermediate
- addition of water occurs through anti stereoselectivity
- nucleophilic attack occurs at most highly substituted carbon
- NaBH<sub>4</sub> replaces HgOAc with hydrogen



This is a two-step process, but is most commonly done as a "one-pot procedure" (upper right).

First step is an in-solution dissociation of mercuric acetate to form an electrophilic mercury ion:

A great electrophile

Now draw a mechanism showing reaction of methylcyclopentene with the electrophile to form of a three-membered bridged mercurinium ion (just like with  $Br_2$ ). Then use water and acetate to get you to the alcohol (with the HgOAc still attached). Finally, NaBH<sub>4</sub> replaces the HgOAc with a hydrogen (mechanism unimportant).

Can you predict the products of the following reactions? Make sure to include stereochemistry when relevant.

$$\frac{1. \text{ Hg(OAc)}_2, \text{ H}_2\text{O}, \text{ THF}}{2. \text{ NaBH}_4}$$

In addition to alcohols, you can also make ethers using this method. Draw a mechanism for the following conversion:

## **Hydroboration-Oxidation**

- concerted *syn*-addition of B-H
- three equivalents of alkene can react with each mole of BH<sub>3</sub>
- addition of hydride to the most highly substituted carbon leads to the anti-Markovnikov alcohol

Add two curved arrows to the left-most structures that lead to the formation of a four-membered transition state, as shown for the addition of BH<sub>3</sub> to the generic alkene shown below:

Draw a mechanism that shows how the trialkylborane is converted to the trialkylborate:

$$3 \text{ R} \rightarrow \text{BH}_3 \rightarrow \frac{2. \text{ NaOH}}{\text{H}_2\text{O}_2}$$

trialkylborane trialkylborate

Draw a mechanism for and the structure of the transition state after the addition of BH<sub>3</sub> to methylcyclohexene:

Now let's do this in three dimensions - draw the transition state:

You should have drawn a structure that shows a cis relationship between the  $BH_2$  and H you just added, and a trans relationship between the  $BH_2$  and the  $CH_3$ .

Each molecule of BH<sub>3</sub> can react with three alkenes to form a trialkylborane that looks like this,

Given what you know about how BH<sub>3</sub> adds to an alkene, and without drawing each step of the mechanism, predict the organic product(s) of this reaction?

$$CH_3$$
 1. BH<sub>3</sub>, THF  
2. NaOH, H<sub>2</sub>O<sub>2</sub>

Draw structures of the alcohols formed by hydroboration/oxidation of each alkene - make sure to include stereochemistry when relevant (not all structures will be chiral):

Both (E)- and (Z)-3-hexene are subjected to a hydroboration-oxidation sequence. How are the products from these two reactions related to each other?

- A) The (E)- and (Z)-isomers generate the same products but in differing amounts.
- B) The (E)- and (Z)-isomers generate the same products in exactly the same amounts.
- C) The products of the two isomers are related as constitutional isomers.
- D) The products of the two isomers are related as diastereomers.
- E) The products of the two isomers are not structurally related.

Which of the following alcohols could *not* be made selectively by hydroboration-oxidation of an alkene?

Referring to the three ways you've learned to make alcohols, which of the following is the best reaction sequence to accomplish a Markovnikov addition of water to an alkene with minimal skeletal rearrangement?

- A) water + dilute acid
- B) water + concentrated acid
- C) oxymercuration-demercuration
- D) hydroboration-oxidation
- E) none of the above